
Unified Parallel C, Part Two
By Forrest Hoffman

EXTREME LINUX

May 2006 Linux Magazine www.linuxmagazine.com

T he March 2006 “Extreme Linux” column — and a
March feature story by Ben Mayer — introduced the

Unified Parallel C (UPC) language. Languages like UPC
(and Co-Array Fortran and others) are designed to make par-
allel programming easier and make the resulting code more
maintainable by making parallelism more implicit (like
shared-memory paradigms) and less explicit and cumber-
some (like message passing schemes). Using UPC, program-
mers can often write code more quickly and with fewer
errors, while still maintaining control over data layout.

UPC, an extension of the International Standards
Organization (ISO) C 99 programming language, uses a
Single Program, Multiple Data (SPMD) model of computa-
tion, just like traditional message passing, in which the
amount of parallelism is fixed at program startup time, usu-
ally with a single thread of execution for each processor.
UPC is developed and supported by a consortium of univer-
sities, government laboratories, and computer vendors. In

addition to the UPC compilers
offered by Hewlett Packard, Cray,

and IBM (supporting their own
hardware and operating sys-

tems), a few free imple-
mentations are also

available.
A free GCC-based

implementation of UPC is
available for x86, x86_64, SGI

IRIX, and Cray T3E systems, and an
MPI-based reference implementation is

offered by Michigan Tech for the Linux and
Tru64 operating systems. However, the most popular imple-
mentation for Beowulf-style clusters appears to be the one
offered by the Lawrence Berkeley National Laboratory
(LBNL). Berkeley UPC is built on top of their GASNet
portable networking library, so it supports not only a sym-
metric multiprocessor (SMP) configuration, but also works
on top of MPI or over Ethernet UDP, Myrinet GM, Quadrics
ELAN 3/4, Mellanox Infiniband VAPI, IBM LAPI, Dolphin
SCI, and SHMEM (on SGI Altix and Cray X1 systems).

Berkeley UPC’s native support for a wide array of high
bandwidth, low latency interconnects makes it ideal for seri-
ous high performance computing applications on Beowulf-
style Linux clusters. The Berkeley compiler is really a run-
time/front-end program that communicates with a UPC-to-
C translator. Interestingly, LBNL allows public access to
their translator via HTTP since the translator can be built

only on a small range of systems. However, the runtime sys-
tem runs on Linux, FreeBSD, NetBSD, Tru64, AIX, IRIX,

LISTING ONE: mvmult1.upc, an example matrix-vector mul-
tiplication

#include <upc_relaxed.h>

#include <stdio.h>

shared double a[THREADS][THREADS];

shared double b[THREADS], c[THREADS];

int main(int argc, char *argv[])

{

int i, j;

for (i = 0; i < THREADS; i++)

upc_forall (j = 0; j < THREADS; j++; j)

a[i][j] = (double)(i*THREADS+j+1);

upc_forall (j = 0; j < THREADS; j++; &b[j])

b[j] = (double)j+1;

upc_barrier;

for (i = 0; i < THREADS; i++) {

c[i] = 0.;

/* WARNING: THIS IS A PROBLEM! */

upc_forall (j = 0; j < THREADS; j++; j)

c[i] += a[i][j] * b[j];

}

upc_barrier;

if (MYTHREAD == 0) {

printf(“+- “);

for (i = 1; i < THREADS - 1; i++) printf(“ “);

printf(“ -+ +- -+ +- -+\n”);

for (i = 0; i < THREADS; i++) {

printf(“|”);

for (j = 0; j < THREADS; j++) {

printf(“ %4.1lf”, a[i][j]);

}

printf(“| |%4.1f| “, b[i]);

if (i == (int)(THREADS/2)) printf(“=”);

else printf(“ “);

printf(“ |%6.1f|\n”, c[i]);

}

printf(“+- “);

for (i = 1; i < THREADS - 1; i++) printf(“ “);

printf(“ -+ +- -+ +- -+\n”);

}

return 0;

}

HPCHPC

HPUX, Solaris, Windows/Cygwin, Mac OS
X, Cray Unicos, and NEC SuperUX.

You can find instructions for download-
ing, building, and installing both GCC
UPC and Berkeley UPC in the March sto-
ries. You can also find examples of using
upc_forall() and upc_barrier() in
those articles. This month, let’s apply UPC
to a more interesting problem that further
illustrates key features of the language.

Data Distribution with UPC

Recall that UPC uses a distributed shared
memory model that provides for both pri-
vate and shared memory spaces, and that
portions of the globally shared address space
have a static affinity with a thread. Know-
ledge of this affinity can be used to exploit
the efficiency of data locality. Consider, for
an example (and to review last month’s dis-
cussion), a piece of code that performs
matrix-vector multiplication, shown in
Listing One.

This program initializes an array (a) and
a vector (b), solves a times b= c, and prints
the results. The code starts by including upc_relaxed.h,
which specifies the relaxed memory consistency mode.

This mode is in contrast to strict mode for which
upc_strict.h should be included. In strict mode, shared data
are synchronized prior to access by another thread. Strict
mode also prevents the compiler from rearranging opera-
tions utilizing shared data, and it can result in significant
overhead. As a result, relaxed mode is preferred, but it
requires that the programmer ensure memory consistency
through the use of fences, barriers, and locks.

Next, the matrix (a) and both vectors (b and c) are
declared as shared, double precision data objects. The
THREADS keyword is the number of threads running the
code, and, in this case, it must be specified at compile time.

Inside main(), upc_forall() is used to initialize a and b.
Since no block size was specified for these shared data
objects, the default block size of 1 is used and each element
of the matrix and vector is assigned in round robin fashion
to threads, as shown in the left half of Figure One.

Exploiting Data Affinity

Knowing this affinity, initialization is optimized by having
each thread initialize only the portion of the shared data
objects local to it. For the matrix a, initialization for a col-
umn is assigned to each thread in turn, while for b, initial-
ization of each row element is assigned to each thread in
turn. After these two upc_forall() loops, upc_barri-
er() is called to provide the needed synchronization point.
This ensures that no other work is done until all the threads
are finished initializing a and b.

After the barrier, the matrix-vector multiplication is per-
formed in parallel, according to the equation at the bottom
of Figure One. Again, the upc_forall() loop is written so
that, with the default block size of 1, the thread to which
elements of a and b have affinity perform the multiplication.
Next, another upc_barrier() call is made before thread 0
prints out the entire matrix and both vectors. Then the pro-
gram exits by returning 0.

However, there’s an evident problem when the program is

EXTREME LINUX

www.linuxmagazine.com Linux Magazine May 2006

FIGURE TWO: Differing results from execution to execution aren’t very use-
ful

[gcc_upc]$ upc –fupc-threads-8 –o mvmult1 mvmult1.upc

[gcc_upc]$./mvmult1

+-

| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0| | 1.0| | 49.0|

| 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0| | 2.0| | 105.0|

| 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0| | 3.0| | 161.0|

| 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0| | 4.0| | 217.0|

| 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0| | 5.0| = | 273.0|

| 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0| | 6.0| | 329.0|

| 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0| | 7.0| | 385.0|

| 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0| | 8.0| | 441.0|

+-

[gcc_upc]$./mvmult1

+-

| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0| | 1.0| | 9.0|

| 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0| | 2.0| | 33.0|

| 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0| | 3.0| | 57.0|

| 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0| | 4.0| | 81.0|

| 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0| | 5.0| = | 105.0|

| 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0| | 6.0| | 129.0|

| 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0| | 7.0| | 153.0|

| 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0| | 8.0| | 177.0|

+-

FIGURE ONE: Two strategies to distribute work to threads

compiled with GCC UPC and run twice,
as shown in Figure Two. Programs that
generate different results when run twice
aren’t very useful. In both cases, the a
matrix and b vector are identical, but the
solution (the c vector) is different. The
problem with mvmult1.upc is that the j
loop in the matrix-vector multiplication
is not parallel, since each thread updates
c[i] simultaneously.

The matrix-vector multiplication can,
however, be parallelized by parallelizing
the i loop. In that case, every element of
c is computed by a single thread. In fact,
each thread computes the c[i] which
has affinity with that thread (i.e., the
local c[i]). Instead of having elements
of b local, elements of c are local.

With the i loop parallel, each thread
computes an element of c using a row of a
instead of a column, which makes more
sense. Therefore, each thread must obtain
all but one element of its row from the
other threads unless the a matrix is dis-
tributed differently. Fortunately, this is
easy to do in UPC. Simply change the
declaration of the a matrix to give it a
block size of THREADS as follows:

shared [THREADS] double

a[THREADS][THREADS];

With that small change, the matrix is dis-
tributed among the threads as shown in
the right half of Figure One. In the distri-
bution, each thread needs to obtain only
the (THREADS- 1) elements of b from other
threads to compute its element of c, since
all the required elements of a are local.

With this new scheme, the a matrix would optimally be
initialized with a parallel loop over i instead of over j as
well. Listing Two contains the corrected code with the appro-
priate block size and parallel loops. (The serial code that
prints out every element of the matrix and the vectors isn’t
repeated in Listing Two; it’s the same as in Listing One.)

As shown in Figure Three, the new code generates the cor-
rect output when compiled with GCC UPC and re-run. In
fact, this code generates correct answers even if the block
size of a were not specified, since the parallelism is done cor-
rectly. However, more communication would be required,
making the code less efficient.

In all of these tests, the programs were compiled for 8

threads, but run on a machine that has only two processors.
For real parallel codes, either a large SMP machine is need-
ed or a different version of UPC is required to distribute the
threads among other Linux cluster nodes.

Berkeley UPC does this very thing using its GASNet net-
work layer. Figure Four shows one way to compile and run
the code using Berkeley UPC. Each of the eight threads was
run on a different node, and the generated results are correct.

The Berkeley UPC compiler front-end allows the pro-
grammer to choose a desired network using the ––network
parameter. The User Datagram Protocol (UDP) is the most
efficient on Linux clusters not employing a high bandwidth,
low latency interconnect. The number of threads is set using

EXTREME LINUX

May 2006 Linux Magazine www.linuxmagazine.com

FIGURE THREE: The results of running Listing Two

[gcc_upc]$ upc –fupc-threads-8 –o mvmult2 mvmult2.upc

[gcc_upc]$./mvmult2

+-

| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0| | 1.0| | 204.0|

| 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0| | 2.0| | 492.0|

| 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0| | 3.0| | 780.0|

| 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0| | 4.0| |1068.0|

| 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0| | 5.0| = |1356.0|

| 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0| | 6.0| |1644.0|

| 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0| | 7.0| |1932.0|

| 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0| | 8.0| |2220.0|

+-

FIGURE FOUR: Running Listing Two on many processors

[bupc]$ upcc ––network=udp –T=8 –o mvmult2 mvmult2.upc

[bupc]$ export UPC_NODES=”node13 node14 node15 node16 \

node17 node18 node19 node20 node21 node22”

[bupc]$ upcrun ./mvmult2

UPCR: UPC thread 0 of 8 on node13 (process 0 of 8, pid=3765)

UPCR: UPC thread 2 of 8 on node15 (process 2 of 8, pid=2643)

UPCR: UPC thread 6 of 8 on node19 (process 6 of 8, pid=32290)

UPCR: UPC thread 4 of 8 on node17 (process 4 of 8, pid=5362)

UPCR: UPC thread 1 of 8 on node14 (process 1 of 8, pid=3180)

UPCR: UPC thread 7 of 8 on node20 (process 7 of 8, pid=32005)

UPCR: UPC thread 3 of 8 on node16 (process 3 of 8, pid=2432)

UPCR: UPC thread 5 of 8 on node18 (process 5 of 8, pid=1818)

+-

| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0| | 1.0| | 204.0|

| 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0| | 2.0| | 492.0|

| 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0| | 3.0| | 780.0|

| 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0| | 4.0| |1068.0|

| 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0| | 5.0| = |1356.0|

| 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0| | 6.0| |1644.0|

| 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0| | 7.0| |1932.0|

| 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0| | 8.0| |2220.0|

+-

–T, although, to quote the upcc man page, “The disgust-
ing syntax –F (upc-) threads-NUM is also accepted,
for compatibility with other UPC compilers.”

You Can Try This at Home!

Getting the data distributed properly for optimal effi-
ciency in computation is an important first step in writ-
ing parallel code in any language. UPC’s method for dis-
tributing data is pretty easy, and it allows you to avoid
writing explicit message passing code. With your favorite
algorithm in hand, try out UPC for yourself. It might be
just what you need to produce an efficient parallel pro-
gram without lots of MPI calls.

Forrest Hoffman is a computer modeling and simulation
researcher at Oak Ridge National Laboratory. He can be
reached at forrest@climate.ornl.gov. You can download the
code shown here from http://www.linux-mag.com/down-
load/ 2006-05/extreme.tar.gz.

EXTREME LINUX

www.linuxmagazine.com Linux Magazine May 2006

LISTING TWO: mvmult2.upc, an improved matrix-
vector multiplication code

#include <upc_relaxed.h>

#include <stdio.h>

shared [THREADS] double a[THREADS][THREADS];

shared double b[THREADS], c[THREADS];

int main(int argc, char *argv[])

{

int i, j;

upc_forall (i = 0; i < THREADS; i++; i)

for (j = 0; j < THREADS; j++)

a[i][j] = (double)(i*THREADS+j+1);

upc_forall (j = 0; j < THREADS; j++; &b[j])

b[j] = (double)j+1;

upc_barrier;

upc_forall (i = 0; i < THREADS; i++; i) {

c[i] = 0.;

for (j = 0; j < THREADS; j++)

c[i] += a[i][j] * b[j];

}

upc_barrier;

/* Insert here the block of code from

* mvmult1.upc to print out the arrays */

return 0;

}

