
By Forrest Hoffman

EXTREME LINUX

March 2006 Linux Magazine www.linuxmagazine.com

Unified Parallel C 101

In addition to focusing on building, operating, and maintain-
ing Linux clusters, this column has frequently explored the

fundamentals of parallel programming. Message passing schemes
running across distributed memory cluster nodes using both
the Message Passing Interface (MPI) and Parallel Virtual Machine
(PVM) have been presented. In addition, shared memory
schemes within a multiprocessor node (using OpenMP) and
hybrid combinations of MPI and OpenMP have been
discussed. (To catch up on these previous columns,
see the Parallel Programming “trail” at http://
www.linux-mag.com/trails/parallel/.)

While most parallel codes must ef-
fectively utilize many distributed mem-
ory nodes, writing message passing code
can be tedious and downright difficult.
On the other hand, shared memory para-
digms like OpenMP often seem more natural
and are easier to code and maintain. What’s
needed is a parallel programming scheme that
looks like a shared memory programming
paradigm, but works across distributed memory hardware.

Enter Unified Parallel C (UPC).

Extending C

Unified Parallel C is an extension of the International
Standards Organization (ISO) C 99 programming language.
UPC unifies three previous modifications to the C language
for supporting parallel programming: AC, Split C, and the
Parallel C Preprocessor. Designed for high-performance com-
puting on large-scale parallel machines, including Beowulf-
style clusters, UPC provides a uniform programming model
for both shared and distributed memory hardware. It uses a
single program, multiple data (SPMD) model of computation,
just like traditional message passing, in which the amount of
parallelism is fixed at program startup time, usually with a
single thread of execution for each processor.

In UPC, parallelism is expressed with an explicitly paral-
lel execution model (SPMD with one or more threads exe-
cuting a program in its entirety), a shared address space (through
shared and private data type qualifiers), synchronization prim-
itives (locks, barriers, and memory fences), a memory consis-
tency model (strict and relaxed memory references), and
memory management primitives. UPC is an attempt to com-
bine the advantages of the shared memory programming par-
adigm with the control over data layout and performance of
the message passing programming paradigm.

UPC is developed and supported by a consortium of uni-
versities, government laboratories, and computer vendors.
Most notable among these are George Washington University,
which hosts a community web site (http://upc.gwu.edu/),
and Lawrence Berkeley National Laboratory (LBNL) which
offers a UPC implementation and is working on a number of
UPC-related projects (see http://upc.lbl.gov/). Version 1.2 of

a formal language specification for UPC was pro-
duced by the UPC Consortium in May 2005

(available online at http://upc.lbl.gov/docs/user/
upc_spec_1.2.pdf). In addition to LBNL’s free

UPC implementation, a free GCC imple-
mentation of UPC is available for

x86, x86_64, SGI IRIX, and Cray
T3E systems, and an MPI-based refer-

ence implementation is offered by Michigan
Tech for Linux and Tru64 operating systems.

Hewlett Packard, Cray, and IBM also offer UPC
compilers supporting their own hardware and operat-

ing systems.

The Basics of UPC Extensions to C

In UPC, every instance of execution is called a thread, as it
is in OpenMP but unlike MPI, in which every instance of
execution is called a process. UPC provides two important
pre-defined identifiers that can be used in a program to deter-
mine the parallel layout during execution. THREADS is an
integer that specifies the total number of threads that are
executing the code. It has the same value on every thread.

LISTING ONE: hello.upc, a “Hello, World” program
written in Unified Parallel C

#include <upc.h>

#include <stdio.h>

int main (int argc, char *argv[])

{

int i;

for (i = 0; i < THREADS; ++i) {

if (i == MYTHREAD)

printf (“Hello World! I’m thread %d of %d\n”,

MYTHREAD, THREADS);

}

return 0;

}

HPCHPC

MYTHREAD is an integer that specifies the unique thread
index, starting at zero, for each instance of execution.

Believe it or not, that’s all you need to know to write your
first UPC program, the equivalent of the “Hello, World! ” pro-
gram from previous MPI examples. Listing One contains the
UPC version. Besides the upc.h header file and pre-defined
identifiers MYTHREAD and THREADS, Listing One looks just
like a standard C program. The program loops over the total
number of threads and when the loop counter is equal to the
thread number of the current instance of execution, “Hello,
World! ” is printed. All threads execute this entire loop and
print a message only when each thread’s local loop counter
(i) is equal to MYTHREAD, the local thread number.

A key feature of UPC is that it uses a distributed shared
memory model that provides for both private and shared mem-
ory spaces. Private memory is declared in normal C fashion, as
was done for the variable i in Listing One. As mentioned in Ben
Mayer’s feature on next-generation parallel computing languages
(in this issue), use of the shared memory space requires the
shared qualifier on variable (or object) declarations as follows:

shared [block_size] type variable_name

For example, the line shared int counter declares an
integer variable that resides in thread 0’s memory but which
is accessible by all threads. The line shared int myarray
[100] is equivalent to shared [1] int myarray[100].
It defines an integer array that is shared across all threads
with a block size of one. That means the first element of the
array, myarray[0], resides in thread 0’s memory, myarray[1]
resides in thread 1’s memory, and so on, in round-robin fash-
ion across all threads. The block size could be specified so
that each thread holds one or more blocks of contiguous ele-

ments. A contiguous memory layout may provide better data
locality for many codes; it may prevent frequent retrievals of
data located in another thread’s memory, significantly speed-
ing up execution time.

For example, the line…

shared [N/THREADS] int parray[N]

… declares an integer array of N elements in blocks of size
N/THREADS. The first block of N/THREADS elements resides
with thread 0, the second block resides with thread 1, and so
on. If N is not evenly divisible by THREADS, the floor() of
N/THREADS is used, so an additional short block is created
and assigned (in round-robin fashion) to thread 0.

A line of the form shared [] int zarray[N] declares
an integer array of N elements with an infinite block size.
This causes all elements of the array to be placed in the mem-
ory of thread 0. Shared pointers (private pointers to shared
memory, shared pointers to shared memory, and even shared
pointers to private memory) can be declared, but these con-
structs will be saved for a future column. In general, the asso-
ciation between memory and threads is called affinity.

As Ben Mayer suggests, knowledge of this affinity can be used
to exploit data locality with constructs like the work sharing
upc_forall() statement. This construct looks like a standard
for() statement, but includes a fourth parameter that deter-
mines the thread to which the current iteration should be
assigned. This parameter can be either an integer, which is trans-
lated to (integer%THREADS), or an address, the owner of
which is assigned the current iteration. Obviously this construct
is useful only if loop iterations are independent of one another.

Listing Two shows a very simple UPC program that creates a
shared integer array a[] with the number of elements being
the number of threads in use. The program simply assigns to
each element its element number and then each element of
the array is printed. The program uses upc_forall() so that
each thread assigns a value only to its own element of the
a[] array; however, every thread subsequently prints every
element of the shared array.

The upc_forall() statement in Listing Two assigns each
iteration to the appropriate thread by taking its fourth
parameter, i, and computing i% THREADS. The statements
could have been written equivalently as…

upc_forall (i = 0; i < THREADS; i++; &a[i])

In that case, each loop iteration is automatically assigned to
the thread on which a[i] resides.

This program looks straightforward enough, but it has a bug.
Care to guess what it is?

Before answering that question, let’s get a compiler (or
two) and start running the code.

EXTREME LINUX

www.linuxmagazine.com Linux Magazine March 2006

LISTING TWO: assn.upc creates a shared array of
integers

#include <upc.h>

#include <stdio.h>

shared int a[THREADS];

int main(int argc, char *argv[])

{

int i;

upc_forall (i = 0; i < THREADS; i++; i)

a[i] = i;

for (i = 0; i < THREADS; i++)

printf (“%d: a[%d]=%d\n”,

MYTHREAD, i, a[i]);

return 0;

}

Getting a Compiler

A number of UPC compilers are
available for Linux systems. The
two most obvious candidates are
GCC UPC (available at http://
www.intrepid.com/upc/) and Berk-
eley UPC (available at http://upc.
nersc.gov/). GCC UPC is essen-
tially a patch to the GCC sources
and is implemented as a C lan-
guage dialect translator in the same
fashion as the GNU Objective C
compiler. GNU UPC is available
for Intel Itanium (ia64) Linux,
AMD (amd64) Linux, Intel
(x86) Linux, SGI IRIX, and Cray
T3E. It can be built by patching
existing GCC sources and com-
piling, by downloading a fully
patched suite of GCC sources and
compiling, or by downloading and
installing binaries. It may be eas-
iest to simply build a custom ver-
sion of GCC in a separate place
to try out this compiler. This can
be accomplished by following
these steps as root:

[root]# cd /usr/local/src

[src]# wget ftp://ftp.intrepid.com/pub/upc/

rls/upc-3.4.4.1/upc-3.4.4.1.src.tar.gz

[src]# tar xvzf upc-3.4.4.1.src.tar.gz

[src]# cd upc-3.4.4.1

[upc-3.4.4.1]# mkdir –p /usr/local/upc-3.4.4.1

[upc-3.4.4.1]# ./configure

––prefix=/usr/local/upc-3.4.4.1

[upc-3.4.4.1]# make; make install

To try UPC, compile and run the “Hello, World! ” program.
Since the steps above didn’t install the compiler in the nor-
mal location for system binaries, you’ll need to add the loca-
tion of the compiler binaries to your path before compiling
and running the program.

[upc]$ export PATH=/usr/local/

upc-3.4.4.1/bin:$PATH

[upc]$ upc –fupc-threads-4 hello.upc –o hello

[upc]$./hello

Hello World! I’m thread 0 of 4

Hello World! I’m thread 1 of 4

Hello World! I’m thread 2 of 4

Hello World! I’m thread 3 of 4

It appears to work. Four threads, specified at compile time,
started and printed Hello World! But all four threads ran
on the same node, and this node has only two processors. For
a real parallel model, the goal would be to have one thread per
processor, and have the model running on multiple nodes.
Unfortunately, there is no network layer in GCC UPC to
support running across distributed memory nodes. For an
SGI Altix or a Cray T3E, each of which appears as one large
symmetric multiprocessor system, GCC UPC would work
fine, but for Beowulf-style clusters another solution is needed.

Fortunately, Berkeley UPC is built on top of their GASNet
portable networking library. It supports not only an SMP con-
figuration, but also works on top of MPI or over Ethernet UDP,
Myrinet GM, Quadrics ELAN 3/4, Mellanox Infiniband VAPI,
IBM LAPI, Dolphin SCI, and SHMEM (on SGI Altix and Cray
X1 systems). Native support for this wide array of high-band-
width, low-latency interconnects means that UPC could be
used for serious high-performance computing applications. The
runtime system has been tested on Linux, FreeBSD, NetBSD,
Tru64, AIX, IRIX, HPUX, Solaris, Microsoft Windows/Cygwin,
Mac OS X, Cray Unicos, and NEC SuperUX.

EXTREME LINUX

March 2006 Linux Magazine www.linuxmagazine.com

FIGURE ONE: Testing the Berkeley UPC compiler

[upc]$ export PATH=/usr/local/berkeley_upc-2.2.1/bin:$PATH

[forrest@node01 upc]$ upcc ––version

This is upcc (the Berkeley Unified Parallel C compiler), v. 2.2.1

(getting remote translator settings...)

UPC Runtime | v. 2.2.1, built on Jan 13 2006 at 00:48:33

UPC-to-C translator | release 2.2.0, built on Dec 2 2005 at 07:26:48

Translator location | http://upc-translator.lbl.gov/upcc-2.2.cgi

networks supported | udp smp mpi

default network | mpi

…

linker flags | -DGASNET_NDEBUG -O3 -finline-limit=10000 -Winline

| -L/usr/local/berkeley_upc-2.2.1/lib -lupcr-mpi-seq

| -lumalloc -L/usr/local/berkeley_upc-2.2.1/lib

| -lgasnet-mpi-seq -lammpi

| -L/usr/lib/gcc-lib/i386-redhat-linux/2.96 -lgcc -lm

[upc]$ upcc —network=udp -o hello hello.upc

[upc]$ export UPC_NODES=”node13 node14 node15 node16 \

node17 node18 node19 node20 node21 node22”

[upc]$ export UPC_SSH=rsh

[upc]$ upcrun -n 4 ./hello

UPCR: UPC thread 0 of 4 on node13 (process 0 of 4, pid=4687)

UPCR: UPC thread 1 of 4 on node14 (process 1 of 4, pid=3835)

UPCR: UPC thread 2 of 4 on node15 (process 2 of 4, pid=3487)

UPCR: UPC thread 3 of 4 on node16 (process 3 of 4, pid=3687)

Hello World! I’m thread 1 of 4

Hello World! I’m thread 3 of 4

Hello World! I’m thread 0 of 4

Hello World! I’m thread 2 of 4

The Berkeley compiler is really a runtime/front-end pro-
gram that communicates with a UPC-to-C translator.
Interestingly, LBNL allows public access to their translator
via HTTP, since the translator can be built on a narrower
range of systems. By default, the front-end program simply
uses the LBNL translator over the network. The front-end
can be downloaded and built by following these steps as root:

[root]# cd /usr/local/src

[src]# wget http://upc.lbl.gov/download/

release/berkeley_upc-2.2.1.tar.gz

[src]# tar xvzf berkeley_upc-2.2.1.tar.gz

[src]# cd berkeley_upc-2.2.1

[berkeley_upc-2.2.1]# mkdir –p

/usr/local/berkeley_upc-2.2.1

[berkeley_upc-2.2.1]# ./configure

––prefix=/usr/local/berkeley_upc-2.2.1

[berkeley_upc-2.2.1]# make; make install

These steps build in support only for SMP, UDP, and MPI (if
it is available on the system). Additional flags must be pro-
vided to configure to compile in support for the other net-
work hardware listed above.

Again, because the software was installed in an isolated place,
you and your users will need to add this location to their path.
Running upcc ––version provides detailed information
about the runtime system. The steps shown in Figure One can
be used to test the compiler using the “Hello, World! ” program.

In Figure One, UDP is selected as the network to use at
compile time. Apparently UDP has better performance than
MPI. A list of nodes was provided in the UPC_NODES envi-
ronment variable, and the default program for contacting the
other nodes was changed to rsh by setting the UPC_SSH envi-
ronment variable.

With Berkeley UPC, the compiled code must be executed
using the upcrun command. The –n flag is used to set the
number of threads desired (unless that number is set at com-
pile time). Four threads were requested, and those were all
spawned on separate nodes.

Now the code in Listing Two can be tested. Using the GCC
UPC compiler with four threads, compiling and running the
assn program yields:

[gcc_upc]$ upc –fupc-threads-4 –o

assn assn.upc

[gcc_upc]$./assn | sort

0: a[0]=0

0: a[1]=1

0: a[2]=0

0: a[3]=0

1: a[0]=0

1: a[1]=1

1: a[2]=0

1: a[3]=0

2: a[0]=0

2: a[1]=1

2: a[2]=2

2: a[3]=0

3: a[0]=0

3: a[1]=1

3: a[2]=2

3: a[3]=3

Here, the problem is evident. Not all of the values of a[2]
and a[3] are correct, but this is one big shared array. The
problem is that some threads print the values before the val-
ues are set by other threads. Something is needed to make
each thread wait until all the threads have finished setting
values in the shared array.

This can be accomplished by inserting a upc_barrier
between the a[i]=i; line and the for(i=0; i< THREADS;
i++) line in Listing Two. When the program is recompiled
and run, the following output is generated:

0: a[0]=0

0: a[1]=1

0: a[2]=2

0: a[3]=3

1: a[0]=0

1: a[1]=1

1: a[2]=2

1: a[3]=3

2: a[0]=0

2: a[1]=1

2: a[2]=2

2: a[3]=3

3: a[0]=0

3: a[1]=1

3: a[2]=2

3: a[3]=3

Try It Yourself!

That should be enough information to get you started using
UPC. Give it a try and see if it makes programming your par-
allel codes easier. You can also read the book UPC:
Distributed Shared Memory Programming (http://www.wiley.
com/WileyCDA/WileyTitle/productCd-0471220485,
descCd- description.html) for in-depth specifications, exam-
ples, and lots of working code.

Forrest Hoffman is a computer modeling and simulation
researcher at Oak Ridge National Laboratory. He can be
reached at forrest@climate.ornl.gov.

EXTREME LINUX

www.linuxmagazine.com Linux Magazine March 2006

