
OPEN SOURCE. OPEN STANDARDS.
M A G A Z I N E
LINUX

WWW.LINUXMAGAZINE.COM

JANUARY 2004

J
A

N
U

A
R

Y
 2

0
0
4

L
IN

U
X

M
A

G
A

Z
IN

E
          

L
in

u
x in

 E
u
ro

p
e
    •    U

s
e
r M

o
d
e
 L

in
u
x    •    P

H
P
 5

 R
e
fle

c
tio

n
V
o
lu

m
e
 6

   /
   Is

s
u
e
 1

THE STATE OF THE
EUROPEAN UNION
Linux is Hopping 
Across the Pond

PHP 5
REFLECTION
The Path to 
Self-Discovery

XSH
Navigate XML
Documents
Interactively

ALSO INSIDE:
• Samba 3’s

net Command

• Go Parallel
with OpenMP

• Diagramming    
with DIA

PROJECT OF THE MONTH: phpBB

USER MODE LINUX: 
RUN LINUX ON LINUX

0104 Cover (Curtis)  11/19/03  9:52 AM  Page 1

creo




EXTREME LINUX

44 January 2004 Linux Magazine www.linuxmagazine.com

Multi-Processing with OpenMP
By Forrest Hoffman

I n this column’s previous discussions of parallel program-
ming, the focus has been on distributed memory paral-

lelism, since most Linux clusters are best suited to this pro-
gramming model. Nevertheless, today’s clusters often contain
two or four (or more) processors per node. While one could
simply start multiple MPI processes on such nodes to use
these processors, taking best advantage of the hardware
requires a different approach. Processors within a node typi-
cally share all the memory within that node, and they can
communicate much more quickly with each other than with
processors on other nodes.

What’s needed is a method that can be used to exploit a dif-
ferent level of parallelism, that which is available on sym-
metric multi-processor (SMP) machines. While a number of
shared-memory-supporting packages exist — including
SHMEM (shared memory used in conjunction with System
V Inter-Process Communication), HPF (High-Performance
FORTRAN), Pthreads (POSIX threads), as well as some
vendor-specific compiler directives — one of the easiest to
use is OpenMP.

Widely accepted by the high performance computing
(HPC) community, OpenMP is a specification for a set of
compiler directives, an applications programming interface
(API), and a set of environment variables that can be used
to specify shared memory parallelism in FORTRAN and
C/C++ programs. The OpenMP specifications were devel-
oped by the OpenMP Architecture Review Board (ARB), a
group of hardware and software vendors working in con-
junction with government and academic researchers. To
read the specifications or learn more about the OpenMP
Architecture Review Board, see http://www.openmp.org.

Most commercial supercomputer vendors provide imple-
mentations of OpenMP optimized for their hardware, and
most commercial compilers for Linux offer OpenMP sup-
port. For example, Intel’s compilers are designed to deliver
optimal performance for their new hyperthreading proces-
sors. But you don’t need a commercial supercomputer or
even a Linux cluster to use OpenMP. In fact, it may be used
to take advantage of the multiple processors in a machine.
Moreover, you may find OpenMP to be an easy way to
exploit some inherent concurrency in your application even
on a single processor computer.

OpenMP may be used to obtain most of the parallel per-
formance you can expect from your code, or it may serve as
a stepping stone to parallelizing an entire application with
MPI. For large computational science problems running on
clusters of SMP machines, OpenMP is often used in con-

junction with MPI to provide two levels of simultaneous par-
allelism for optimal performance.

How OpenMP Works

OpenMP is based on a fork and join model of parallel execu-
tion in which a master thread (thread number 0) spawns a
team of threads as needed in parallel regions of the code. At the
end of a parallel region, the team of threads collapses back to
a single thread (the master), and serial execution continues
from that point. Any number of parallel regions may be con-
tained in a single program, so it may fork and join many
times throughout program execution, as shown in Figure One.

OpenMP is usually used to parallelize one or more time-
consuming loops in an array-based program. The loop itera-

Serial Region

Parallel Region

Serial Region

Prog
ra

m
 Ex

ecution

Parallel Region

Serial Region

Parallel Region

Master
Thread

Serial Region

FIGURE ONE: OpenMP uses a fork and join model of exe-
cution in which a master thread “forks” a team of threads in
parallel regions of code. After parallel execution of tasks,
these threads “join” to the master thread, and the master
executes serial regions alone.

0104 Extreme  11/19/03  9:46 AM  Page 44

creo




EXTREME LINUX

www.linuxmagazine.com Linux Magazine January 2004 45

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#ifdef _OPENMP

#include <omp.h>

#endif /* _OPENMP */

#define ROWS  8

#define COLS  10000000

int num_threads;

double array[(ROWS*COLS)];

void fill_array()

{

int i, j;

srandom((unsigned int)0);

for (j = 0; j < ROWS; j++)

for (i = 0; i < COLS; i++)

array[(j*COLS+i)] = (double)random() / 

RAND_MAX;

return;

}

double sum_row(int j)

{

int i, k;

double row_sum = 0.0, row_mean, sum_squares = 0.0,

row_sigma, junk = 0.0;

printf(“sum_row(%d) called”, j);

#ifdef _OPENMP

printf(“ by thread #%d”, omp_get_thread_num());

#endif /* _OPENMP */

printf(“\n”);

for (i = 0; i < COLS; i++)

row_sum += array[(j*COLS+i)];

row_mean = row_sum / (double)COLS;

for (i = 0; i < COLS; i++)

sum_squares += (array[(j*COLS+i)] - row_mean) *

(array[(j*COLS+i)] - row_mean);

row_sigma = sqrt(sum_squares / (double)COLS);

/* these loops waste time to emulate a bunch of 

complex calculations */

for (i = 0; i < 2; i++) {

for (k = 0; k < ROWS * COLS; k++) {

if (k%2) junk += array[k] * array[k];

else junk -= array[k] * array[k];

junk = sqrt(junk);

}

}

printf(“row %d: mean = %lf, standard deviation = 

%lf\n”, j, row_mean, row_sigma);

return row_sum;

}

double sumsq_row(int j, double mean)

{

int i;

double sum_squares = 0.0;

printf(“sumsq_row(%d, %lf) called”, j, mean);

#ifdef _OPENMP

printf(“ by thread #%d”, omp_get_thread_num());

#endif /* _OPENMP */

printf(“\n”);

for (i = 0; i < COLS; i++)

sum_squares += (array[(j*COLS+i)] - mean) * 

(array[(j*COLS+i)] - mean);

printf(“row %d: sum of squares = %lf\n”, j,

sum_squares);

return sum_squares;

}

int main(int argc, char **argv)

{

int j;

double sum = 0.0, mean, sum_squares = 0.0, sigma;

#ifdef _OPENMP

num_threads = omp_get_max_threads();

#else /* _OPENMP */

num_threads = 1;

#endif /* _OPENMP */

printf(“Program started with “);

#ifdef _OPENMP

printf(“%d threads\n”, num_threads);

#else /* _OPENMP */

printf(“threading disabled\n”);

#endif /* _OPENMP */

fill_array();

#pragma omp parallel for private(j) reduction(+:

sum)

for (j = 0; j < ROWS; j++)

sum += sum_row(j);

mean = sum / (double)(ROWS * COLS);

#pragma omp parallel for private(j) reduction(+: 

sum_squares)

for (j = 0; j < ROWS; j++)

sum_squares += sumsq_row(j, mean);

sigma = sqrt(sum_squares / (double)(ROWS * COLS));

printf(“Array sum = %lf, mean = %lf, standard 

deviation = %lf\n”, sum, sum / (double)(ROWS *

COLS), sigma);

exit(0);

}

LISTING ONE: stat.c, an example of using OpenMP

0104 Extreme  11/19/03  4:26 AM  Page 45



EXTREME LINUX

46 January 2004 Linux Magazine www.linuxmagazine.com

tions shouldn’t depend on each other; that is, iterations
should be order independent and must be able to be com-
puted concurrently. A simple directive placed above such
loops enable OpenMP threading with little or no additional
code modifications. Since the constructs are directives, the
same code can be compiled with compilers with no
OpenMP. When run, the same answers should be obtained. 

Structured blocks of code can be parallelized with
OpenMP, but those blocks must have a single point of entry
and a single point of exit. The only other branches allowed are
STOP statements in FORTRAN and exit() in C/C++. There
is an implied barrier at the end of a structured block that

causes threads to wait until they have all completed execu-
tion of that block before proceeding. This behavior can be
overridden with a nowait clause in the block’s directive.

OpenMP Syntax

OpenMP directives are based on the standard #pragma
directives for C/C++, and on C$OMP, !$OMP, or *$OMP com-
ments in FORTRAN. Compliant compilers usually require
specification of a command line flag to enable interpretation
of OpenMP directives. When enabled, the _OPENMP pre-
processor macro is defined (as yyyymm signifying the year
and month of the approved specification) when compiling.

Directives fall into three classes: parallel constructs, work-
sharing constructs (within parallel constructs), or combined,
parallel work-sharing constructs. The formats of the direc-
tives are…

#pragma omp directive-name [clause[ [,] 

clause]...]

… for C/C++, and…

!$OMP directive-name [clause[ [,] 

clause]...]

for FORTRAN-90. FORTRAN also has ending directives
since it doesn’t have a code-blocking structure. Most direc-
tives can have a number of clauses. Clauses control how
variables and data are shared, how the work is partitioned,
and how threads are scheduled.

OK, enough formalism. Let’s jump into an example.
Listing One contains a fairly simple piece of C code, called

stat.c that uses OpenMP. It calculates the mean and standard
deviation of a large array of random numbers between 0 and
1. (We all know the answer; that’s why it’s a good test code.)
The code may be compiled with or without OpenMP
enabled, and when run generates the same result in either case.

The OpenMP API elements are “wrapped” with #ifdefs
referencing the _OPENMP macro that’s defined when the
appropriate compiler command line flag is used to enable
OpenMP. When enabled, the OpenMP header file, omp.h, is
included and two calls are used somewhere in the code:
omp_get_max_threads() and omp_get_thread_num().

Starting in main(), omp_get_max_threads() is used to
obtain the maximum number of threads that may be used dur-
ing program execution. This number is stored in num_
threads. If OpenMP is disabled, num_threads is set to
one. This may be good practice in codes where some informa-
tion about each thread is stored in an automatic array. Next,
the program prints Program started with and either
reports the number of threads or prints threading disabled.

OUTPUT ONE: stat.c without OpenMP enabled

[forrest@node01]$ ppggcccc  ––OO  ––oo  ssttaatt  ssttaatt..cc

[forrest@node01]$ ttiimmee  ..//ssttaatt

Program started with threading disabled

sum_row(0) called

row 0: mean = 0.500034, standard deviation = 0.288651

sum_row(1) called

row 1: mean = 0.500045, standard deviation = 0.288658

sum_row(2) called

row 2: mean = 0.499887, standard deviation = 0.288665

sum_row(3) called

row 3: mean = 0.500147, standard deviation = 0.288600

sum_row(4) called

row 4: mean = 0.499920, standard deviation = 0.288638

sum_row(5) called

row 5: mean = 0.500086, standard deviation = 0.288568

sum_row(6) called

row 6: mean = 0.500124, standard deviation = 0.288674

sum_row(7) called

row 7: mean = 0.499992, standard deviation = 0.288713

sumsq_row(0, 0.500029) called

row 0: sum of squares = 833193.862532

sumsq_row(1, 0.500029) called

row 1: sum of squares = 833234.227900

sumsq_row(2, 0.500029) called

row 2: sum of squares = 833273.014429

sumsq_row(3, 0.500029) called

row 3: sum of squares = 832899.634968

sumsq_row(4, 0.500029) called

row 4: sum of squares = 833118.311465

sumsq_row(5, 0.500029) called

row 5: sum of squares = 832716.030687

sumsq_row(6, 0.500029) called

row 6: sum of squares = 833324.233857

sumsq_row(7, 0.500029) called

row 7: sum of squares = 833549.315257

Array sum = 40002341.975667, mean = 0.500029, 

standard deviation = 0.288646

real 5m22.651s

user 5m20.828s

sys 0m1.840s

0104 Extreme  11/19/03  4:26 AM  Page 46



Then fill_array() is called to stuff random numbers
into a global array of size ROWS * COLS. The random num-
ber seed is set to a specific value (in this case NULL), so that
the exact same result is obtained each time the program is
run. In this way, you can check to be sure that the serial ver-
sion and the parallel version give the same output.

Now the fun begins. The code loops over all rows and calls
a routine (sum_row()) to sum the values in each row and
accumulate the results in the variable sum. Clearly the sum
of values in each row can be calculated simultaneously with-
out side-effects. Therefore, you can place an OpenMP direc-
tive above the for loop to spawn multiple threads that can
run sum_row() concurrently.

The parallel for construct is used along with the
private(variable-list) and reduction(operator
: variable-list) clauses. The for loop following such
a directive must have canonical shape. That means it must
look like: for (init; var oper b; incr) where init
must be of the form integer var = initial value;
var must be a variable of signed integer type; oper is one of
<, <=, >, or >=; b is the bound for the loop; and incr must
be one of a limited number of forms for incrementing or
decrementing var. Moreover, it must be possible to calculate
the loop length — the number of iterations — upon entry to
the loop, and the loop can have no other means of exit (no
breaks allowed!), except by satisfying the var oper b

expression or calling exit().
The for loop in the example meets all of these criteria. How-

ever, some non-deterministic models may have loops that do
not. If such loops in these other models need shared-memory
parallelization, OpenMP is not the solution. Fortunately, a large
class of models can be parallelized in deterministic fashion.

The parallel for directive uses a private clause that
specifies that j is a private variable. That means that each
thread should have its own copy of j, possibly with a unique
on each thread. Since this is the loop control variable, each
thread will have a different value for j. It turns out that loop
control variables are private by default, so it’s not necessary
to explicitly specify the variable in a private clause.

The reduction clause tells the compiler that the value
for the variable sum should be private on each thread (and
initialized to zero), and that their values should be added up
(and stored for the master thread) before leaving the loop. If
this clause hadn’t been used, all threads would have added
the return values of sum_row() to the same shared sum
variable. While this might work in some configurations, it
could cause values to be lost when multiple threads contend
for updating the same memory location.

After the loop is complete, the master thread computes
the mean of the entire array by dividing the accumulated
row sums by the number of array elements (ROWS * COLS).
Next, a second parallel region — another parallel for

— is entered. This loop computes the sum of the squares by
row, and accumulates the results in sum_squares. Then,
the master thread calculates and reports the standard devia-
tion, sigma.

Before compiling and running the code, a couple of things
to keep in mind. First, both sum_row() and sumsq_row()
print out the number of the thread that’s executing the rou-
tine (when compiled with OpenMP enabled). This allows
you to know which thread is working on which row in the
matrix. 

EXTREME LINUX

www.linuxmagazine.com Linux Magazine January 2004 47

OUTPUT TWO: Compiling and running stat with OpenMP
using 2 threads.

[forrest@node01]$ ppggcccc  ––mmpp  ––OO  ––oo  ssttaatt  ssttaatt..cc

[forrest@node01]$ ttiimmee  OOMMPP__NNUUMM__TTHHRREEAADDSS==22  ..//ssttaatt

Program started with 2 threads

sum_row(0) called by thread #0

sum_row(4) called by thread #1

row 0: mean = 0.500034, standard deviation = 0.288651

sum_row(1) called by thread #0

row 4: mean = 0.499920, standard deviation = 0.288638

sum_row(5) called by thread #1

row 1: mean = 0.500045, standard deviation = 0.288658

sum_row(2) called by thread #0

row 5: mean = 0.500086, standard deviation = 0.288568

sum_row(6) called by thread #1

row 2: mean = 0.499887, standard deviation = 0.288665

sum_row(3) called by thread #0

row 6: mean = 0.500124, standard deviation = 0.288674

sum_row(7) called by thread #1

row 3: mean = 0.500147, standard deviation = 0.288600

row 7: mean = 0.499992, standard deviation = 0.288713

sumsq_row(0, 0.500029) called by thread #0

sumsq_row(4, 0.500029) called by thread #1

row 0: sum of squares = 833193.862532

sumsq_row(1, 0.500029) called by thread #0

row 4: sum of squares = 833118.311465

sumsq_row(5, 0.500029) called by thread #1

row 5: sum of squares = 832716.030687

sumsq_row(6, 0.500029) called by thread #1

row 1: sum of squares = 833234.227900

sumsq_row(2, 0.500029) called by thread #0

row 6: sum of squares = 833324.233857

sumsq_row(7, 0.500029) called by thread #1

row 2: sum of squares = 833273.014429

sumsq_row(3, 0.500029) called by thread #0

row 3: sum of squares = 832899.634968

row 7: sum of squares = 833549.315257

Array sum = 40002341.975667, mean = 0.500029, 

standard deviation = 0.288646

real 3m0.119s

user 5m55.715s

sys 0m3.402s

0104 Extreme  11/19/03  4:27 AM  Page 47



Second, after the row sum and row sum of squares are computed in sum_row(),
another set of loops is executed to calculate a variable called junk. These loops
simply waste lots of time performing meaningless computations so that the
sum_row() routine will take lots of time. It turns out that, because of the addi-
tional overhead required to handle OpenMP threading, this code would run
faster without OpenMP if not for these time-wasting loops.

The last point is an important one. OpenMP parallelism improves perform-
ance only if sufficient amounts of concurrent work needs to be performed. Even
with the long rows in the array in this example code, the computations can be
performed so fast that the standard deviation can be calculated more quickly by
a single thread. A certain amount of overhead is required for OpenMP even if
only a single thread is used, so be sure the time-to-solution of your problem is
improved before adopting any parallel construct.

Now, The Numbers

First, let’s compile and run the code without OpenMP. Output One contains the
results. This example uses the Portland Group’s (http://www.pgroup.com) C
compiler, which has OpenMP support. The code was run on a dual processor 1.0
GHz Pentium III machine, running RedHat Linux 7.3.

As you can see, the stat code printed the mean and standard deviation of each row
in the matrix as well as the sum, mean, and standard deviation of the entire matrix.
No surprises here: the mean is 0.5 and the standard deviation is 0.289. Thanks to
the time-wasting loops, it took 5 minutes, 22 seconds to complete the calculations.

Next, we compile and run stat with two OpenMP threads. To enable OpenMP
support on the Portland Group compilers, use the –mp command line option. The
number of threads may be specified either in a directive, by calling omp_set_
num_threads() within the code, or by setting the OMP_NUM_THREADS envi-
ronment variable. In Output Two, the OMP_NUM_THREADS environment variable
has been set to 2 while running the program to establish the requested number
of threads.

The program reports that it was started with 2 threads, and you can see that
sums for rows 0, 1, 2, and 3 were performed by thread 0, while sums for rows 4,
5, 6, and 7 were calculated by thread 1 concurrently. The same goes for the calls
to sumsq_row(). The exact same answers were obtained, but this time the
computation took only three minutes to complete.

Because of the overhead associated with OpenMP threads, you see a 1.8X
speedup instead of something close to a 2.0 times speedup. In fact, when the same
code is run on the same machine with only a single OpenMP thread, it takes 5 min-
utes, 35 seconds, or 13 seconds longer than when compiled without OpenMP.

It’s possible, and sometimes advantageous, to use more threads than the number
of available processors, but usually only in powers of two. When run with four threads
on the same machine, the stat program completes in 3 minutes, 21 seconds. Because
all the work is divided up perfectly symmetrically in our code, all threads are always
working, so no performance gain was seen. However, in more complex codes
where asymmetries exist, additional threads may improve overall performance.

Next month, we’ll delve deeper into OpenMP, and learn about other con-
structs for shared–memory parallelism. Until then, try OpenMP on some of the
loops in your favorite model.

Forrest Hoffman is a computer modeling and simulation researcher at Oak Ridge
National Laboratory. He can be reached at forrest@climate.ornl.gov.

EXTREME LINUX

48 January 2004 Linux Magazine www.linuxmagazine.com

0104 Extreme  11/20/03  10:36 AM  Page 48


