
Unified Parallel C, Part Three
By Forrest Hoffman

EXTREME LINUX

June 2006 Linux Magazine www.linuxmagazine.com

T his is the third column introducing the basics of Unified
Parallel C (UPC). UPC, Co-Array Fortran, and other

new productivity-oriented programming languages are
designed to simplify parallel programming and code mainte-
nance. For some types of algorithms, UPC allows program-
mers to code more quickly and in a style that is considerably
less cumbersome than traditional message passing.

As described previously, UPC is an extension of the
International Standards Organization (ISO) C 99 program-
ming language. UPC uses a Single Program, Multiple Data
(SPMD) model of computation, just like message passing.
UPC is developed and supported by a consortium of univer-
sities, government laboratories, and computer vendors.
Commercial UPC compilers are available from Hewlett

Packard, Cray, and IBM; however, a number of free imple-
mentations are also becoming available.

Part One of this series provided instructions for building
and installing two of the free UPC implementations, one
based on GCC (and available for x86, x86_64, SGI IRIX,
and Cray T3E systems), and one available from the Lawrence
Berkeley National Laboratory (LBNL), which builds on
LBNL’s GASNet portable networking library. The GCC
implementation is good for codes running solely on SMP
(symmetric multi-processor) machines, while the Berkeley
implementation works well on distributed memory parallel
systems and supports a wide variety of network intercon-
nects. The Berkeley compiler is really a runtime/front-end
program that communicates with a UPC-to-C translator. By

#include <upc_relaxed.h>

#include <stdio.h>

#define N 4

#define P 3

#define M 6

/* N and M must be multiples of THREADS */

shared [N/THREADS*P] double a[N][P];

/* decomposed row-wise */

shared [M/THREADS] double b[P][M];

/* decomposed column-wise */

shared [N/THREADS*M] double c[N][M];

/* decomposed row-wise */

double b_local[P][M];

int main(int argc, char *argv[])

{

int i, j, k;

/* Initialization of a and b */

upc_forall (i = 0; i < N; i++; &a[i][0])

for (j = 0; j < P; j++)

a[i][j] = (double)(i*P+j+1);

upc_forall (j = 0; j < M; j++; &b[0][j])

for (i = 0; i < P; i++)

b[i][j] = (double)((P*M+1)-(i*M+j+1));

upc_barrier;

/* Cheaper to pre-fetch elements of b into local

copy instead of implicitly fetching them every time

they are needed */

for (i = 0; i < P; i++)

for (j = 0; j < THREADS; j++)

upc_memget(&b_local[i][j*(M/THREADS)],

&b[i][j*(M/THREADS)],

(M/THREADS)*sizeof(double));

upc_forall (i = 0; i < N; i++; &c[i][0]) {

for (j = 0; j < M; j++) {

c[i][j] = 0.;

for (k = 0; k < P; k++)

c[i][j] += a[i][k] * b_local[k][j];

}

}

upc_barrier;

if (MYTHREAD == 0) {

printf(“ +- “);

for (i = 1; i < M – 1; i++) printf(“ “);

printf(“ –+\n”);

for (i = 0; i < N; i++) {

if (i == (int)(N/2) – 1) printf(“c = “);

else printf(“ “);

printf(“|”);

for (j = 0; j < M; j++)

printf(“ %5.1lf”, c[i][j]);

printf(“|\n”);

}

printf(“ +- “);

for (i = 1; i < M – 1; i++) printf(“ “);

printf(“ –+\n”);

}

return 0;

}

LISTING ONE: The matrix-matrix multiply code, mmmult.upc

default, it accesses the translator at LBNL via HTTP.
The upc_forall() and upc_barrier() calls were

described and used in example programs in Part One (avail-
able online at http://www.linux-mag.com/2006-03/extreme
_01.html). May’s column (available online after June 15,
2006, at http://www.linux-mag.com/2006-03/extreme_01.
html) discussed data distribution and thread affinity and
applied these concepts in a parallel code that performed a
simple matrix-vector multiplication.

This month’s column includes a more-useful matrix-
matrix multiplication example and describes some addition-
al features of the UPC language.

Matrix-Matrix Multiplication

UPC employs a distributed shared memory model that has
both private and shared memory spaces, and portions of the
shared memory have a static affinity with a thread. Previous
example programs presented here have attempted to demon-
strate the best ways to exploit this data locality by appropri-
ately adjusting blocking of shared objects. In the matrix-
vector multiply program, it was a simple matter to change
the blocking on the matrix so that it decomposed row-wise
instead of column-wise.

Similarly, in the matrix-matrix multiply code shown in
Listing One, which performs AxB=C, the double-precision N
x P matrix A is decomposed row-wise, while the double-pre-
cision P x M matrix B is decomposed column-wise. This is
accomplished with the declarations of a and b as shared
double, with the appropriate blocking factors [N/THREADS
*P] and [M/THREADS], respectively.

With these declarations, N/THREADS consecutive rows of
a are placed on each thread, while M/THREADS consecutive
columns of b are placed on each thread. This assumes, of
course, that N and M are multiples of THREADS. For simplici-
ty, assume that two threads are used, and that N, P, and M are
statically defined at the top of Listing One.

Considering that the first N/THREADS rows of a and the
first M/THREADS columns of b have affinity with the first

thread, one would expect the best performance to be
achieved with a row-wise decomposition for the double-pre-
cision N x M matrix C as shown in the declaration of c in
Listing One. However, every row of a must be multiplied by
every column of b, so some communication of elements of b
is required to complete the calculation. For this reason, a
local (non-shared) matrix b_local is declared.

Inside main(), the a and b matrices are initialized in par-
allel, based on their specified decompositions, using
upc_forall loops. Rows of a and columns of b are set to
some value on the thread to which they have affinity. Next,
a upc_barrier call ensures that a and b are completely
initialized before the program continues. After the barrier,
block copies of the shared bmatrix — accomplished with the
upc_memget() call — explicitly copy elements of the bmatrix
to the b_local matrix, which is private on each thread.

While it’s not necessary for threads to have a local copy of
the bmatrix, a great deal more communication occurs in the
computation of the c matrix (below) if each thread must
repeatedly retrieve elements of b from other threads. It’s more
efficient to retrieve these elements once, and use a local copy
of the bmatrix in the computation of c. The upc_memget()
routine, which looks very much like a one-sided message
passing communication call, provides a method to explicitly

EXTREME LINUX

www.linuxmagazine.com Linux Magazine June 2006

FIGURE ONE: Memory copy and memory set routines
in Unified Parallel C

➤ upc_memcpy(shared void*restrict dst,

shared const void*restrict src,size_t n)

copies n bytes from a shared object having affinity with
one thread to a shared object having affinity with the
same or another thread.

➤ upc_memget(void*restrict dst, shared

const void*restrict src, size_t n) copies n
bytes from a shared object with affinity to any single
thread to an object on the calling thread.

➤ upc_memput(shared void*restrict dst,

const void*restrict src, size_t n) copies n
bytes from an object on the calling thread to a shared
object with affinity to any single thread.

➤ upc_memset(shared void*dst, int c, size_t

n) copies the value of c, converted to an unsigned
char, to a shared object with affinity to any single
thread. The number of bytes set is n.

A x B = C

c
i, j

= a
i, k

 x b
k, j∑

P

k=1

FIGURE TWO: The formula for matrix multiplication

UPC and other new productivity-oriented
programming languages are designed
to simplify parallel computing

copy shared data to private memory. Memory copy and set
routines in UPC are listed in Figure One.

After each thread has constructed its own copy of
b_local, elements of the resulting c matrix are computed
in parallel using the now-familiar upc_forall() loop con-
struct following the equation in Figure Two. The work is split
up according to the affinity of each row of c. Since the affin-
ity of a matches that of c (and since a local copy of b is
used), this computation fully exploits data locality.

Another upc_barrier call is made to ensure that all of
the elements of c are computed on all threads before the first
thread (MYTHREAD==0) prints out the contents of the c
matrix. Finally, all threads return zero and the program ends.

The Correct Placement of Barriers

Two of the pitfalls of the simplicity of UPC are forgetting to
include and misplacing barrier calls. Since it’s very easy to
implicitly retrieve data objects from other threads in UPC,
one must be careful to guarantee that these data objects are
up-to-date. The matrix-matrix multiplication program offers
a simple example of the potential dangers.

In the initial version of this code, the first upc_barrier
call was accidentally placed after the loop that pre-fetches
elements of b into the private b_local matrix using
upc_memget instead of before it. When the program was
compiled and run using GCC UPC with two threads, as shown
in Figure Three, it generated the c matrix, but six of the ele-
ments of this matrix were zero. By printing the values of all
the other matrices, it was easy to determine the problem.

The first thread retrieved elements of b from the second
thread before they were initialized by the program. As a
result, the b_local matrix on the first thread contained all
zeroes in the fourth, fifth, and sixth columns, and these zeroes
were used in the calculation of the fourth, fifth, and sixth
columns of the first two rows in c, as shown in Figure Three.

Moving the upc_barrier call up to just after the initial-
ization of b but before the loop with upc_memget() causes
the program to wait for all threads to complete the initial-
ization of a and b before continuing. Once all threads reach
the barrier, it’s safe to fetch elements of b from any thread.
Figure Four shows the correct output from the program com-
piled and run using two threads with GCC UPC and with
Berkeley UPC.

Pointers and Dynamic Memory Allocation in UPC

UPC provides for both private and shared pointers, which
may point to either private or shared objects. The declara-
tion shared int *p; defines a pointer to an integer residing
in the shared memory space. Pointer arithmetic is possible with
shared pointers, but it may be slow, since it follows the shared

object throughout shared memory. In many cases, better per-
formance may be achieved by using a private pointer into
shared memory that has affinity with a given thread.

Global memory can be allocated and freed explicitly with
UPC routines as follows:

shared void*upc_global_alloc(size_t nblocks,

size_t nbytes);

void upc_free(shared void*ptr);

upc_global_alloc() is a non-collective call (should be
called by only a single thread) that allocates a contiguous
memory region in the shared memory space equivalent to
shared[nbytes]char[nblocks*nbytes]. If called by
more than one thread, multiple regions of memory are allo-
cated and each thread is returned a different pointer.
upc_free() is also a non-collective call and frees dynami-
cally allocated shared memory pointed to by ptr.

Check Out Other UPC Resources

UPC offers a number of other features, including synchroniza-

EXTREME LINUX

June 2006 Linux Magazine www.linuxmagazine.com

FIGURE THREE: An error results from having the
upc_barrier after the loop containing
upc_memget() instead of before it

[gcc_upc]$ upc –fupc-threads-2 mmmult.upc –o mmmult

[gcc_upc]$./mmmult

+- –+

| 60.0 54.0 48.0 0.0 0.0 0.0|

c = | 168.0 153.0 138.0 0.0 0.0 0.0|

| 276.0 252.0 228.0 204.0 180.0 156.0|

| 384.0 351.0 318.0 285.0 252.0 219.0|

+- –+

Printing the other matrices reveals the source of the problem:

+- –+

| 1.0 2.0 3.0|

a = | 4.0 5.0 6.0|

| 7.0 8.0 9.0|

| 10.0 11.0 12.0|

+- –+

+- –+

| 18.0 17.0 16.0 15.0 14.0 13.0|

b = | 12.0 11.0 10.0 9.0 8.0 7.0|

| 6.0 5.0 4.0 3.0 2.0 1.0|

+- –+

+- –+

| 18.0 17.0 16.0 0.0 0.0 0.0|

b_local = | 12.0 11.0 10.0 0.0 0.0 0.0|

| 6.0 5.0 4.0 0.0 0.0 0.0|

+- –+

See Extreme, pg. 56

EXTREME LINUX

www.linuxmagazine.com Linux Magazine June 2006

tion locks, non-blocking/split-phase barriers, and other explicit
communications calls, all of which make it a very powerful lan-

guage for parallel programming. The strengths of UPC are its
simplicity and its good performance for embarrassingly par-
allel problems; however, these additional language features
make it possible to do almost anything that can be done with

MPI (the Message Passing Interface) while min-
imizing the amount of message passing code that
must be written.

For many complex models, MPI still offers the
best performance, but for image processing and a
variety of simpler parallel computing tasks, UPC
can offer equal performance and better code
maintainability.

These three UPC tutorials should give you
enough to get started in writing your own code
in UPC. Additional tutorials and documenta-
tion can be found at the UPC Web sites at
George Washington University (http://upc.gwu.
edu/) and the Lawrence Berkeley National
Laboratory (http://upc.nersc.gov/). Download
one of the compilers and try it out for yourself!

Forrest Hoffman is a computer modeling and simu-
lation researcher at Oak Ridge National Laboratory.
He can be reached at forrest@climate.ornl.gov.

FIGURE FOUR: The correct output for the matrix-matrix multiply
program with the upc_barrier placed before the loop containing
upc_memget() for GCC UPC and for Berkeley’s implementation

[gcc_upc]$ upc –fupc-threads-2 mmmult.upc –o mmmult

[gcc_upc]$./mmmult

+- –+

| 60.0 54.0 48.0 42.0 36.0 30.0|

c = | 168.0 153.0 138.0 123.0 108.0 93.0|

| 276.0 252.0 228.0 204.0 180.0 156.0|

| 384.0 351.0 318.0 285.0 252.0 219.0|

+- –+

[bupc]$ upcc –-network=udp –T=2 –o mmmult mmmult.upc

[bupc]$ upcrun ./mmmult

UPCR: UPC thread 0 of 2 on node1 (process 0 of 2, pid=7071)

UPCR: UPC thread 1 of 2 on node2 (process 1 of 2, pid=6375)

+- –+

| 60.0 54.0 48.0 42.0 36.0 30.0|

c = | 168.0 153.0 138.0 123.0 108.0 93.0|

| 276.0 252.0 228.0 204.0 180.0 156.0|

| 384.0 351.0 318.0 285.0 252.0 219.0|

+- –+

Push: test:test

Push: dev:dev

There is no hard requirement that the same name be used on
both sides of the refspec colon such as test:test.However,
care should be taken to track the flow of objects and the expect-
ed use patterns carefully. If you’re expecting to have other users
clone and pull from this repository, it is quite likely, though
not required, that you want to ensure that your push updates
somehow land in the master branch. Furthermore, since ref-
specs can potentially match branch names, tags and heads,
and so on, you can be more explicit if needed. For example:

Push: refs/heads/test:ref/heads/test

Push: refs/tags/today:ref/tags/today

If you’re providing either HTTP protocol support for clones
of your repositories, or a gitweb interface to them as described
here, you should perform one more important change to
your repositories to support them. Both of these tools rely on
a few files of pre-built information located in the .git/info and
.git/objects/info directories.

After a git push operation has updated a repository, the
git update-server-info command must also be executed.

While you may run this by hand from within the repository with
the GIT_DIR environment variable set to ., it is easier and more
reliable to enable the post-update hook. It’s located in the hooks
subdirectory, and can be enabled by simply making it executable.
The post-updatehook is automatically invoked on the remote
repository after it has finished updating all of the references ini-
tiated by a local git pushoperation. The default action for the
post-update hook is to perform the git update-server-
info command!

Go Forth and Collaborate!

You now have all of the necessary tools to collaborate with git.
You know how to create new git repositories, base new develop-
ment off of a clone of some pre-existing public repository, set up
a git server using HTTP and git protocols through Apache and
basic Linux services, provide a web-based front-end for your re-
pository, and finally, know how to create and update it. With
that, other developers will be able to use and leverage your work.

There is still plenty of room to explore how best to pro-
vide development branches, publish works in progress, lever-
age distributed development efforts, and coordinate between
different remote sites!

Jon Loeliger currently works at Freescale Semiconductor devel-
oping Linux for the PowerPC.

Extreme, from pg. 50

Git, from pg. 37

