
The

World’s

Most

Reliable

Linux

Systems

clusters

servers

workstations

Scyld Beowulf™

© 2003 Penguin Computing. All rights reserved. Penguin Computing and the PC logo are registered trademarks of Penguin.
Linux is a registered trademark of Linus Torvalds. Scyld Beowulf is a trademark of Scyld Computing Corp. Photo © 2003 Gary Wagner.

1-8
8

8
-p

en
g
u

in
w

w
w

.p
en

g
u

in
co

m
p
u

tin
g
.co

m

OPEN SOURCE. OPEN STANDARDS.
M A G A Z I N E
LINUX

WWW.LINUXMAGAZINE.COM

FEBRUARY 2004

F
E
B

R
U

A
R

Y
 2

0
0

4
L
IN

U
X

M
A

G
A

Z
IN

E

S
to

ra
g
e
 Ta

n
k • P

o
s
tg

re
S
Q

L
7

.4
 • B

e
rke

le
y D

B
X
M

L

V
o
lu

m
e
 6

 /
 Is

s
u
e
 2

POSTGRESQL
7.4
The Database
Administrator’s
Database

BERKELEY
DB XML
Native Storage
for XML Documents

THE Z SHELL
Teach Your Old
Shell New Tricks

ALSO INSIDE:
• Building Class-less

Classes in Perl

• Mastering the
XFT Font System

• MySQL’s Many
MyISAM Tables

PROJECT OF THE MONTH: Compiere

STORAGE TANK:
IBM’S SMART SAN

0204 Cover (Curtis) 12/17/03 1:55 PM Page 1

creo

42 February 2004 Linux Magazine www.linuxmagazine.com

OpenMP Multi-Processing, Part 2
By Forrest Hoffman

EXTREME LINUX

T his month, we continue our focus on shared-memory par-
allelism using OpenMP. As a quick review, remember that

OpenMP consists of a set of compiler directives, a handful of
library calls, and a set of environment variables that can be
used to specify run-time parameters. Available for both
FORTRAN and C/C++ languages, OpenMP can often be
used to improve performance on symmetric multi-processor
(SMP) machines or SMP nodes in a cluster by simply (and
carefully) adding a few compiler directives to the code. Most
commercial compilers for Linux provide support for
OpenMP, as do compilers for commercial supercomputers.

Last month’s column provided a brief introduction to the fork
and join model of execution, where a team of threads is spawned
(or forked) at the beginning of a concurrent section of code
(called a parallel region) and subsequently killed (or joined) at the
end of the parallel region. Frequently used to parallelize one or
more time-consuming loops in array-based programs, OpenMP
splits up loop iterations (which must be independent at some
level) among a specified number of threads, allowing itera-
tions to be processed at the same time instead of sequentially.

The OpenMP syntax of directives and clauses and the
parallel for directive were discussed in the previous col-
umn. This month, we take a step back to look at more rudi-
mentary directives, and focus on the library calls and envi-
ronment variables that support OpenMP parallelism. The
descriptions and code examples are based on the C/C++
OpenMP 2.0 specification.

Directives from Above

OpenMP directives sit just above the code block that they
affect. They are case sensitive, and take the form #pragma
omp directive-name [clause[[,] clause]...].

The most basic directive is the parallelconstruct. It defines
a structured block of code as a parallel region. This parallel
region will be executed simultaneously by multiple OpenMP
threads. The parallel directive accepts the if, private,
firstprivate, default, shared, copyin, reduction,
and num_threads clauses.

When program execution encounters a parallel construct, a
team of threads is created if no if clause is specified or when the
if (scalar-expression) evaluates to a non-zero value.
When a team of threads is spawned, the thread that encoun-
tered the parallel construct becomes the master thread (with
a thread number of 0), and all threads in the team execute
the code region in parallel. If the if expression evaluates to
zero, the region is executed by only a single thread.

The private, firstprivate, default, shared, copy-
in, and reduction clauses affect the data environment of
the parallel region. We’ll see how to use these clauses later. The
num_threads clause can be used to specify the number of
threads that should execute the parallel region. This clause
overrides the omp_set_num_threads() library function
(if called), which overrides the OMP_NUM_THREADS envi-
ronment variable (if set). The num_threads clause affects
only the parallel region directly below the parallel construct of
which it is a part.

The number of threads that execute a parallel region is also
dependent upon whether or not dynamic adjustment of the num-
ber of threads is enabled. If dynamic adjustment is disabled, the
requested number of threads will execute the parallel region.
On the other hand, if dynamic adjustment is enabled, the
requested number of threads is the maximum number that
may execute the parallel region, because the run-time envi-
ronment automatically adjusts the number of threads to make
best use of system resources. The omp_set_dynamic() library
function and the OMP_DYNAMIC environment variable may be
used to enable or disable dynamic adjustment.

If a thread in a team encounters another parallel directive, it
spawns a new team of threads and becomes the master thread
of that new team. By default, this sort of nested parallel region
is serialized (that is to say that it’s executed by a new team of
one thread, the one that made itself a master). This default
behavior can be changed by calling omp_set_nested() or by
setting the OMP_NESTED environment variable. However,
the number of threads that execute a nested parallel region
is not defined by the OpenMP standard. The compiler is free
to serialize any nested parallel regions.

There is an implied barrier at the end of a parallel region.
That means that threads wait at that point until all threads
have completed the parallel region, and then only the mas-
ter thread continues executing code outside the parallel region.
Many OpenMP constructs have an implied synchronization
point at the end of the affected code block. For some of these
constructs, the nowait clause may be used to eliminate this
barrier; however, the nowait clause is not valid for a par-
allel construct.

In addition to the parallel construct, OpenMP includes
a variety of work-sharing constructs that are used to divide up
work among threads in a parallel region of code. These directives
include the for, sections, and single constructs. All three
of these directives must appear within a parallel region. The
parallel for construct introduced last month is merely a
short-hand for specifying a parallel region containing only a loop.

0204Extreme 12/18/03 11:22 PM Page 42

The for and parallel for constructs divide loop iter-
ations among threads according to the scheme specified in
the schedule clause or the OMP_SCHEDULE environment
variable. The schedule clause takes one of the following
forms:

➤ schedule(static [,chunk_size]) deals out blocks
of iterations of size chunk_size to each thread.

➤ schedule(dynamic [,chunk_size]) lets each
thread grab chunk_size iterations off a queue until all
are done.

➤ schedule(guided [,chunk_size]) specifies that
threads dynamically grab blocks of iterations. The size of
blocks starts large and shrinks down to size chunk_size
as the calculation proceeds.

EXTREME LINUX

www.linuxmagazine.com Linux Magazine February 2004 43

FIGURE ONE: The complete list of OpenMP Library Functions from the C/C++ OpenMP 2.0 specification

void omp_set_num_threads(int num_threads) sets the default number of threads to use for parallel regions (an alternative
to the OMP_NUM_THREADS environment variable and the num_threads clause).

int omp_get_num_threads(void) returns the number of threads currently executing the parallel region in which it is called.

int omp_get_max_threads(void) returns the largest number of threads that could be used in subsequent parallel regions.

int omp_get_thread_num(void) returns the thread number of the thread executing the function.

int omp_get_num_procs(void) returns the number of physical processors available to the program/process.

int omp_in_parallel(void) returns a non-zero value if called within a parallel region; otherwise it returns 0.

void omp_set_dynamic(int dynamic_threads) enables or disables dynamic adjustment of threads (an alternative to the
OMP_DYNAMIC environment variable).

int omp_get_dynamic(void) returns a non-zero value if dynamic adjustment is enabled; otherwise it returns 0.

void omp_set_nested(int nested) enables or disables nested parallelism (an alternative to the OMP_NESTED environment
variable).

int omp_get_nested(void) returns a non-zero value if nested parallelism is enabled; otherwise it returns 0.

void omp_init_lock(omp_lock_t *lock) initializes a lock.

void omp_init_nest_lock(omp_lock_t *lock) initializes a nestable lock.

void omp_destroy_lock(omp_lock_t *lock) ensures that a lock is uninitialized.

void omp_destroy_nest_lock(omp_lock_t *lock) ensures that a nestable lock is uninitialized.

void omp_set_lock(omp_lock_t *lock) blocks the thread until the specified lock is available and then sets the lock; the
lock must have been previously initialized.

void omp_set_nest_lock(omp_lock_t *lock) blocks the thread until the specified nestable lock is available and then sets
the nestable lock; the lock must have been previously initialized.

void omp_unset_lock(omp_lock_t *lock) releases ownership of a lock.

void omp_unset_nest_lock(omp_lock_t *lock) releases ownership of a nestable lock.

int omp_test_lock(omp_lock_t *lock) attempts to set a lock but does not block execution of the thread.

int omp_test_nest_lock(omp_lock_t *lock) attempts to set a nestable lock but does not block execution of the thread.

double omp_get_wtime(void) returns the number of wall clock seconds since some (arbitrary) time in the past.

double omp_get_wtick(void) returns the number of seconds between successive clock ticks.

0204Extreme 12/18/03 11:23 PM Page 43

➤ schedule(runtime) specifies that schedule and chunk
size taken from OMP_SCHEDULE environment variable.

OpenMP Library Functions and Environment
Variables

We’ve already seen the importance of many OpenMP library
functions and environment variables. Most of the library
functions are used for querying or managing the threading
environment, while the environment variables are used for
setting run-time parameters.

A complete list of library functions is contained in Figure
One, and a complete list of environment variables is shown
in Figure Two. In most cases, calls to library functions over-
ride parameters set in environment variables.

It’s often desirable to know the number of threads that will be
used in parallel regions during program execution. The omp_
get_max_threads() routine can be used to determine the
maximum number of threads that can be used. However, if
dynamic adjustment is enabled or the num_threads clause
for a directive is set to a number smaller than the requested
number of threads for the program, a parallel region may not
execute with the maximum number of threads. A call to
omp_get_num_threads() made within the parallel region
of interest returns the actual number of threads being used in
that region. When called outside a parallel region, omp_get_
num_threads() returns a value of one.

Let’s Get Coding!

The omptest1.c program shown in Listing One uses a number
of OpenMP library functions and uses a parallel construct
containing a for construct to perform some simple calcula-
tions. This program will compile and run serially (with
OpenMP turned off) or in parallel, and (importantly!) gen-
erates the same answer in either case.

Remember from last month’s column that the _OPENMP
preprocessor macro is defined when code is compiled with
OpenMP enabled. It’s a good idea to take advantage of this
useful macro by wrapping OpenMP-specific program ele-
ments, like the inclusion of the omp.h header file and calls to
OpenMP library functions, inside #ifdefs. This ensures
that the same code can be compiled for serial execution with
OpenMP disabled.

Just inside main(), a call is made to omp_get_num_
procs() to discover the number of available CPUs on the
machine. Then this number is passed in a call to omp_set_
num_threads() to set the number of OpenMP threads that
should be used in parallel regions. Remember that requesting
the number of threads this way overrides any value in the
OMP_NUM_THREADS environment variable. Next, the maxi-
mum number of threads is obtained by calling omp_
get_max_threads(). When compiled without OpenMP,
the nprocs and max_threads variables are simply set to one.

In the next set of statements, the number of processors
and the maximum number of threads are printed, along with
the actual definition value of _OPENMP. According to the
standard, this value should be set to the year and month of
the approved OpenMP specification. Looking at Figure Three,
we see that the value printed for the Portland Group com-
piler used is 199810.

A call to omp_in_parallel() is made to test whether
or not execution is within a parallel region. We know it is
outside of a parallel region, but we’re just testing the library
functions here. As expected, the line outside a paral-
lel region is printed in Figure Three.

Next, we encounter a parallel construct and a struc-
tured block of code within curly brackets. At this point,
threads will be spawned that all execute the code block. Two
integer variables, tid and num_threads, are declared
inside the block of code — these variables are private to the
threads, meaning each thread has its own copy of these vari-
ables. Then we test the return value from omp_in_paral-
lel() again to make sure it knows we are now in a parallel
region.

At this point, omp_get_num_threads() is called, and
the value is stored in num_threads. Then omp_get_
thread_num() is called, and its return value is stored in tid.
When compiled without OpenMP, num_threads is set to
one and tid is set to zero. All threads then print a Hello
World message that includes their thread id (tid) and the
number of threads (num_threads).

We should have as many Hello World! lines printed as
there are threads executing the parallel region. According to
Figure Three, inside a parallel region is printed twice
(once for each thread), and “Hello World!” lines are printed
by threads 0 and 1. As usual with parallel codes, output from
different threads is not necessarily in order.

EXTREME LINUX

44 February 2004 Linux Magazine www.linuxmagazine.com

FIGURE TWO: OpenMP Environment Variables

OMP_SCHEDULE is used to set the default scheduling type
and optional chunk size for for and parallel for direc-
tives.

OMP_NUM_THREADS is used to set the default number of
threads to use during execution, unless it’s overridden by
calls to omp_set_num_threads() or by num_threads
clause on a parallel directive.

OMP_DYNAMIC can be set to TRUE or FALSE to enable or
disable dynamic adjustment of threads, respectively.

OMP_NESTED can be set to TRUE or FALSE to enable or dis-
able nested parallelism, respectively.

0204Extreme 12/18/03 11:23 PM Page 44

Next, a for loop is encountered. This loop, which simply
prints out the loop iteration number with the thread number
at the beginning of the line, is fully executed by each of the
threads. The lines in Figure Three confirm this behavior. If
loop iterations should instead be split across threads (so that
each is executed only once), an OpenMP for construct
must be used.

The next loop is such a loop, and it has a for directive

above it. Here, the ten iterations are split among the avail-
able threads. As we can see in Figure Three, thread 0 (the
master thread) processed iterations 0-4, while iterations 5-9
are processed by thread 1. All the rules and restrictions dis-
cussed in last month’s column about the parallel for

construct apply here as well.
The implied barrier at the end of the i loop causes threads

to wait for all other threads to complete the calculation

EXTREME LINUX

www.linuxmagazine.com Linux Magazine February 2004 45

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#ifdef _OPENMP

#include <omp.h>

#endif /* _OPENMP */

int max_threads;

double func(int i, int j)

{

int k;

double val;

/* simulate lots of work here */

for (k = 0; k < 10000; k++)

val += sqrt((k+1)*(k+1) /

((i*i) + (j*j) + 1));

return sqrt((i*i) + (j*j));

}

int main(int argc, char **argv)

{

int i, j, nprocs;

double val, total;

#ifdef _OPENMP

nprocs = omp_get_num_procs();

omp_set_num_threads(nprocs);

max_threads = omp_get_max_threads();

#else /* _OPENMP */

nprocs = 1;

max_threads = 1;

#endif /* _OPENMP */

printf("Program started on %d processor node

with ", nprocs);

#ifdef _OPENMP

printf("a maximum of %d threads\n", max_threads);

printf("Note: _OPENMP is defined as %d\n",

_OPENMP);

#else /* _OPENMP */

printf("threading disabled\n");

#endif /* _OPENMP */

#ifdef _OPENMP

if (omp_in_parallel()) printf("inside a

parallel region\n");

else printf("outside a parallel region\n");

#endif /* _OPENMP */

#pragma omp parallel

{

int tid, num_threads;

#ifdef _OPENMP

if (omp_in_parallel()) printf("inside a

parallel region\n");

else printf("outside a parallel region\n");

num_threads = omp_get_num_threads();

tid = omp_get_thread_num();

#else /* _OPENMP */

num_threads = 1;

tid = 0;

#endif /* _OPENMP */

printf("Hello World! from thread %d of %d\n",

tid, num_threads);

/* loop inside a parallel region is executed by

all threads */

for (i = 0; i < 4; i++)

printf("%d: loop 1 iteration %d\n", tid, i);

/* loop inside a parallel region with a OpenMP

for (workload

* sharing) directive is split up among threads */

#pragma omp for reduction(+: total) private(j, val)

for (i = 0; i < 10; i++) {

printf("%d: loop 2 iteration %d\n", tid, i);

for (j = 0; j < 1000; j++) {

val = func(i, j);

total += val;

}

}

printf("Total = %lf\n", total);

printf("Goodbye World! from thread %d of %d\n",

tid, num_threads);

}

printf("Finished!\n");

exit(0);

}

LISTING ONE: omptest1.c, an OpenMP application in C

0204Extreme 12/18/03 11:23 PM Page 45

before continuing outside the for code block. Doing other-
wise (by specifying a nowait clause with the for directive)
could cause an incorrect value of total to be printed in the
next program statement by one or more threads.

Next, all threads print the accumulated total and Goodbye
World!. That ends the parallel code block. Then
Finished! is printed by only the master thread, and the
program exits.

Figure Four contains similar results from compiling and
running the same code with OpenMP disabled. As we can see,
the same answers are obtained either way, but the OpenMP
version ran almost twice as fast as the serial version when it
used two threads.

The reduction and private clauses used in the for
construct are critically important. Removing them will like-

ly cause the program to generate a different answer when
using multiple threads. Go ahead and try it.

This sort of data environment problem results in what's
called a race condition. Since the variables total, j, and val
are declared outside the parallel region, they are shared by
default. By declaring j and val private, separate versions of
these variables are created for each thread. Since we want
total to have the accumulated sum from all threads, the
reduction clause can be used to make that happen.
Remember that the loop index, i, is automatically made pri-
vate so it does not have to be declared as such.

These data environment issues can be tricky, so we’ll dis-
cuss the OpenMP clauses used to manage them in next
month’s column. In addition, we’ll also investigate the
remaining OpenMP directives.

But you know enough now to be dangerous, so get started
on your own code today!

Forrest Hoffman is a computer modeling and simulation
researcher at Oak Ridge National Laboratory. He can be reached
at forrest@climate.ornl.gov. You can download the code used
in this column from http://www.linuxmagazine.com/down-
loads/2004-02/extreme.

EXTREME LINUX

46 February 2004 Linux Magazine www.linuxmagazine.com

FIGURE THREE: Parallel execution of omptest1

[forrest@node01 openmp]$ ppggcccc --mmpp --OO --oo

oommpptteesstt11 oommpptteesstt11..cc

[forrest@node01 openmp]$ ttiimmee ..//oommpptteesstt11

Program started on 2 processor node with a

maximum of 2 threads

Note: _OPENMP is defined as 199810

outside a parallel region

inside a parallel region

Hello World! from thread 0 of 2

0: loop 1 iteration 0

0: loop 1 iteration 1

0: loop 1 iteration 2

inside a parallel region

Hello World! from thread 1 of 2

1: loop 1 iteration 0

1: loop 1 iteration 1

1: loop 1 iteration 2

1: loop 1 iteration 3

1: loop 2 iteration 5

0: loop 1 iteration 3

0: loop 2 iteration 0

1: loop 2 iteration 6

0: loop 2 iteration 1

1: loop 2 iteration 7

0: loop 2 iteration 2

1: loop 2 iteration 8

0: loop 2 iteration 3

1: loop 2 iteration 9

0: loop 2 iteration 4

Total = 4995904.563410

Goodbye World! from thread 1 of 2

Total = 4995904.563410

Goodbye World! from thread 0 of 2

Finished!

real 0m3.622s

user 0m7.195s

sys 0m0.002s

FIGURE FOUR: Serial execution of omptest1

[forrest@node01 openmp]$ ppggcccc --OO --oo oommpptteesstt11--

sseerriiaall oommpptteesstt11..cc

[forrest@node01 openmp]$ ttiimmee ..//oommpptteesstt11--

sseerriiaall

Program started on 1 processor node with

threading disabled

Hello World! from thread 0 of 1

0: loop 1 iteration 0

0: loop 1 iteration 1

0: loop 1 iteration 2

0: loop 1 iteration 3

0: loop 2 iteration 0

0: loop 2 iteration 1

0: loop 2 iteration 2

0: loop 2 iteration 3

0: loop 2 iteration 4

0: loop 2 iteration 5

0: loop 2 iteration 6

0: loop 2 iteration 7

0: loop 2 iteration 8

0: loop 2 iteration 9

Total = 4995904.563410

Goodbye World! from thread 0 of 1

Finished!

real 0m7.204s

user 0m7.193s

sys 0m0.004s

0204Extreme 12/18/03 11:24 PM Page 46

